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Abstract
The nonlinear theory of propagation of an intense laser beam in a partially stripped magnetized
plasma channel is investigated. An external magnetic field is considered, along the direction of
propagation of the laser pulse. A three-dimensional envelope equation for the evolution of the
laser field is derived. Using the source dependent expansion technique, an expression for the
laser spot evolution is derived. The effect of the external magnetic field on the transverse
oscillation of the laser spot is analyzed analytically and numerically. A formulation for the
amplitude modulation instability is derived and the results are compared against the fully
stripped plasma case. The excitation condition and the growth rate of the modulation
instability are discussed. It is observed that increased positive chirp in the laser frequency
enhances the modulation instability significantly. The group velocity dispersion is also
calculated and the results are compared with those for the case of a fully stripped magnetized
plasma channel. The presence of an external magnetic field and that of bound electrons have a
significant effect on the dephasing length, as compared to that for a fully stripped plasma. The
separability of the plasma frequency and laser frequency (ωp and ω0 respectively) is
considered, such that it satisfies the criterion ωp/ω0 < 1.

Keywords: laser plasma interaction, partially stripped plasma, magnetized plasma channel,
modulation instabilities, group velocity dispersion

(Some figures may appear in colour only in the online journal)

1. Introduction

The propagation of high intensity laser pulses in partially
stripped plasma (PSP) and plasma channels is relevant to a wide
range of applications such as in optical harmonic generators,
x-ray sources, laser driven accelerators, and laser fusion [1–9].
It becomes more important when we deal with the interaction
of a short intense laser pulse with a high atomic number target,
such as in indirect laser fusion and x-ray lasers, where the
ions in a plasma are only stripped partially. For example,
for aurum target plasma, the ionization degree is 51 and the
number of electrons remaining in each atom is 28 [10]. The
partially stripped atoms become polarized in the presence of a

very strong electric field of the laser and induce a nonlinear
polarization current. Therefore, many characteristics of a
laser pulse propagating in PSP undergo obvious changes
[11–15]. The bound electrons affect the propagation of
the laser energy in the plasma and can result in an atomic
filamentation instability (AFI), which can dominate over
the conventional relativistic filamentation instability [16–19],
the atomic modulation instability (AMI), and the parametric
instabilities. The mechanisms of these instabilities in PSP are
quite different to those in the fully stripped plasmas (FSPs)
[20]. It has been examined analytically that the free electrons
generate anomalous group velocity dispersion (GVD), where
the bound electrons result in self-phase modulation. This
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results in dispersive temporal broadening, which finally affects
the propagation and the stability of the intense laser pulse.
The atomic polarizability also changes the electric field profile
of the laser pulse and the plasma wave. Sharma and Jain
[21] have examined the effects of the polarizability on the
wakefield generation of an intense laser pulse propagating in a
partially stripped magnetoplasma channel. Recently, Sharma
et al [22] have examined the laser pulse propagation in a
parabolic magnetoplasma channel and wakefield generation.
The analytical results were confirmed by particle-in-cell (PIC)
simulations. In this paper, we build on the previous work by
studying the modulation instability and GVD of a laser pulse
in a magnetoplasma channel. The effect of the laser pulse
propagation on the growth rate of the amplitude modulation
instability in a partially stripped magnetoplasma channel is
examined and a comparison with the case for a FSP is also
presented in this work. Gupta and Suk [23, 24] have examined
the excitation of a large amplitude plasma wave in a narrow
band semiconductor in the presence of a wiggler magnetic
field for two co-propagating laser beams without taking into
consideration the effects of the concentrations of the free and
bound charge carriers. And the effect of a magnetic field
on the laser frequency chirping for a focused laser beam in
an underdense plasma is used to analyze the response of the
chirping to the resonance condition.

When the wave intensity is high enough, the polarization
of the PSP becomes a nonlinear function of the wave field
strength, so the AMI, AFI, self-phase modulation instability,
and parametric instabilities start affecting the free charged
particles and the bound electrons. Parametric instabilities
such as those in stimulated Raman scattering (SRS) and
stimulated Brillouin scattering (SBS) play an important role
in transporting laser beam energy to the target. The growth
rates of these instabilities [25, 26] are affected by the GVD,
leading to a significant change in the stable propagation of the
laser beam.

The preformed plasma channels created by an intense
pulse are used for stable guiding of a short intense relativistic
pulse [27, 28], to focus over several Rayleigh lengths
without any change in the shape of the pulse. In inertial
confinement fusion (ICF) experiments, the laser–hohlraum
coupling depends on the smooth propagation of the laser
pulse through the large scale gas-filled targets. For relativistic
propagation through air or gases, the leading edge of the pulse
creates an ionized plasma channel. It has been observed
that an intense short laser pulse in such a preformed ionized
plasma channel propagates over a greatly extended distance
without any distortion in the shape and intensity [29]. Several
other features of the propagation of short intense pulses in
ionized plasma channels have been examined experimentally
and through simulations [21, 30].

Contributions to the refractive index of an intense laser
pulse in a PSP come from the bound atomic electrons arising
from the finite spot size of the laser pulse −2c/(ω0r0)

2,
the linear contribution from the free electrons of the plasma
−ω2

p/2ω2
0, the nonlinear contribution from the excited plasma

waves �η(δn)/n0), the relativistic contribution from the
plasma electrons, and the nonlinear contribution from the

bound atomic electrons, where ω0 is the laser frequency, r0

is the laser spot size, ωp = (4πn0e
2/m)1/2 is the plasma

frequency, n0 is the ambient plasma density, δn is the perturbed
plasma density, a0 = eA0/mc2 is the normalized peak
amplitude of the laser vector potential, and �η denotes the
change in the refractive index of the medium. The response of
these factors is different in the PSP channels when the channel
is subjected to an external magnetic field in the direction of
the pulse propagation. The different behaviors of these factors
alter the characteristics of the pulse propagation, particularly
the self-focusing. In addition to this, the presence of the bound
electrons effectively changes the nonlinear regime when the
electron plasma density is pushed to several times the critical
density by the ponderomotive force associated with the intense
laser beam [8], and reduces the effect of the Raman scattering.
This may also lead to changes in the mechanism of the GVD,
relativistic focusing, amplitude modulation instability, and
other undesired parametric instabilities.

In this paper, we address the effects of an external
magnetic field and the bound electrons on the evolution
of the short laser pulse and related phenomena such as
modulation instabilities, GVD, and the dephasing length. A
nonparaxial theory is used to analyze the pulse evolution
in the channel in the presence of an external magnetic
field. The analysis is based on the assumption that no
further ionization take place during the propagation of the
pulse through the plasma channel. The response of the
circularly polarized electromagnetic wave to the partially
stripped magnetoplasma channel is different as compared to
that for the FSP channels [21, 31]. A comparison of the two
cases has been discussed in the results part. The effects of a
constant external magnetic field on the self-focusing, GVD,
and atomic modulation instability are underlined for a short
intense circularly polarized Gaussian laser pulse propagating
through a partially stripped magnetoplasma channel.

The present theoretical model may be useful for advanced
laser fusion schemes [8], when the laser target source is situated
at a large distance and the pulse needs to propagate through
a preformed plasma channel. A nonlocal theory is used for
obtaining the evolution of the laser pulse using the source
dependent expansion (SDE) method. The effect of the external
magnetic field on the spatial and temporal evolution of the
pulse, GVD, and AMI are examined numerically.

This paper is organized as follows. In section 2, a three-
dimensional wave equation for the evolution of the intense
circular polarized Gaussian laser pulse in a partially stripped
magnetoplasma channel is formulated. Solutions of the wave
equation are deduced, along with the analytical description of
the spatial evolution and the temporal evolution of the pulse.
A relation for the growth rate of the modulation instability is
derived and examined numerically in section 3. A theory for
the GVD, GVD length, and dephasing length is formulated in
section 4. The results are compared with the FSP case. A
conclusion is given in section 5.

2. Laser envelope evolution

We consider the propagation of a circularly polarized laser
pulse in a partially stripped parabolic plasma channel in the

2
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direction of the applied magnetic field B0z. The amplitude A

of the high frequency electromagnetic field can be expressed
in terms of the vector potential A(r, z, t) as

A(r, z, t) = 1√
2
(êx + iêy)A(r, z)e−r2/r2

ch e
−

(
t−z/vg

τL

)2

(1)

ei(ω0t−
∫ z

0 k0(z) dz)

where êx and êy are the unit vectors perpendicular to
the guide magnetic field, �2 = �2

⊥ + ∂2/∂z2, r is
the effective transverse coordinate, z is the propagation
direction, and A(r, z) is assumed to be the axisymmetric
amplitude of the high frequency field. In terms of
the normalized vector potential a(= eA/mc2), the field
equation is a(r, t) = a(r, z)ei(ω0t−

∫ z

0 k0(z) dz) where a(r, z) =
a0,0e(−r/rch(z))

2
e−(t−z/vg)

2/τ 2
L , a0,0 is the peak value of the

normalized vector potential at the entrance of the channel
(z = 0, t = 0), rch is the channel radius, and vg is the group
velocity of the laser pulse. For axis symmetric interaction, we
have ∇2

⊥ → r−1∂/∂r + ∂2/∂r2.
For the study, the numerical parameters used are as

follows: laser pulse duration τL ∼ 2 fs, intensity I �
1015 W cm−2, laser pulse wavelength λ0 = 0.5 µm, peak value
of the normalized amplitude of the field a0,0 � 0.05, plasma
density n0 � 1018 cm−3, laser beam spot size at the entrance of
the channel 6.4 µm; also, ωp = (4πn0e

2/m)
1
2 is the on-axis

plasma electron frequency at r = 0, where m and e are the
mass and charge of the electron, and kp = ωp/c. The plasma
channel radius is chosen to vary in this way so that, in the
absence of instability, the pulse and channel are matched. The
plasma channel is characterized by a spatially varying density
given as

n(r, z) = n(z)

(
1 +

�n

n0

r2

r2
ch(z)

)
, (2)

where rch(z) and n(z) denote the longitudinally varying
channel radius and on-axis plasma density, respectively, and
the channel depth �n = 1 × 1016 cm−3.

The critical power for relativistic self-focusing in a plasma
[34, 35] and nonlinear focusing in a gas [26, 33, 36–37] are
given by, respectively,

Pp = 2m2c5ω2
0

e2ω2
p(z

′)
, (3a)

and

Pa = c2

2ω2
0η0ηnl

. (3b)

The ratio of the critical powers is

R = Pp

Pa

= 8πχ(3)m2c2ω4
0η0

e2ω2
p(z

′)
, (4)

where η0
∼= 1 for the bound (atomic) electrons and χ(3) is the

third-order susceptibility associated with the bound electrons,
and its magnitude in esu is about 10−38na cm3 [25], where na is
the density of partially stripped atoms. We consider values of
χ(3) for partially stripped atoms of the same order of magnitude
as those for the neutral atom. The nonlinear value of χ(3) for

an ionized atom can be estimated if the charge state is small
compared to the atomic number. Our results are based on the
effective value of R, which is proportional to χ(3) for partially
stripped plasma. In the PSP, if R � 1, the bound electrons
have a much greater influence on the focusing of the laser pulse
than the free electrons. In our present example, we find that
the ratio R is ≈700. It is of interest to note that the optimum
power level required for initiating the laser fusion process can
be maintained more efficiently in magnetized PSPs.

To study the dynamics of the nonparaxial propagation
of the electromagnetic wave in a partially stripped
magnetoplasma channel, we follow the approach used by
Sharma and Jain [21]. The nonlinear dispersion relation, in
terms of the ratio of the critical powers (R), for the laser pulse
in a partially stripped magnetoplasma channel is given as

k0(z
′) ≈

(
ω2

0

c2
− 2

r2
0

− ω2
p(z

′)ω0

c2(ω0 − ωc)

+
8Rω0(ω0 − ωc)

c2
� a �

2

)1/2

. (5)

Following Sprangle et al [26], we have[
∇2

⊥ +
2ivg(z

′)ω0

c2

∂

∂z′
]
a(r, , ξ, z′) = ω2

p(z)ω0

c2(ω0 − ωc)

×
(

r2

r2
ch(z

′)
− ω0

ωc
+

�n(z′)
n0

− � a �
2

2

)

−
[ 2

r2
0

+ (1 − β2
g)

∂2

∂z′2
]
a(r, ξ, z′). (6)

Equation (6) implies that the atomic polarizability participates
in the longitudinal self-modulation and the stationary self-
focusing. The reason is that the longitudinal electron
density perturbation contributes significantly for the group
velocity vg(z

′).
We use the source dependent expansion (SDE) technique

[38] to solve equation (6). The normalized amplitude of the
pulse is given as

a(r, ξ, z′) = a0,0(z
′)e−(r2/r ′2(z′))

×e−(t−z/vg)
2/τ 2(z′) × ψ(r, z′), (7)

where ψ(r, z′) = φ(z′) × e−i(µ(z′)r2/r ′2) is the overall phase
factor which can be considered as a product of the laser pulse
phase (φ(z′)) and a phase factor that arises due to mismatch
of the tapered channel radius and the spot size r ′(z′), τ(z′)
is the pulse duration at spatial coordinate z′, and µ(z′) is a
dimensionless parameter that defines the inverse of the radius
of curvature of the wavefront of the pulse.

In the SDE technique, the wave equation can be written as[
�2

⊥ +
2ivg(z

′)ω0

c2

∂

∂z′

]
a(r, ξ, z′) = S(r, ξ, z′), (8)

where the source term S(r, ξ, z′) is given as

S(r, ξ, z′) = ω2
p(z

′)ω0

c2(ω0 − ωc)

[ (
r2

r2
ch(z

′)
− ω0

ωc
+

�n

n0
− � a �

2

2

)

−
( 2

r2
0

+ (1 − β2
g )

( −2

τ(z′)
+

4ξ 2

v2
g(z

′)τ 2(z′)

))]
a(r, z′, ξ).

(9)
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Figure 1. Variation of the normalized spot radius r ′(z′)/r0 as a
function of kp(z

′) for different magnetic field ratios ωc/ωp: (a) 0.0,
(b) 0.5, (c) 1.0, (d) 1.5.

Using the standard SDE procedure, the equation governing the
laser spot size r ′(z′) and the pulse duration can be given by

∂2r ′(z′)
∂z′2 = 4

r ′3(z′)k2
0(z

′)
− ω2

p(z)

ω0(ω0 − ωc)

×�n

n0

(
1 +

δn

n0

)
r ′(z′)

r
(

chz
′)

− ω2
p(z

′)

ω0(ω0 − ωc)

a2

2r ′(z′)
, (10)

and

∂2τ(z′)
∂z′2 � 4

ω2
0τ

3(z′)r2
0

+
k0(z

′)ω3
p

cω2
0(ω0 − ωc)

×
(

1 +
�n

n0

r ′2(z′)
2rch(z′)2

)
a2(z′)
τ (z′)

. (11)

The terms on the right-hand side of equation (10) include the
effects of diffraction, plasma channel depth, external magnetic
field, and plasma electron perturbation along the direction of
pulse propagation, and the relativistic effect, respectively. The
first and second terms on the right-hand side of equation (11)
are responsible for the GVD effect, channel profile effect, and
the nonlinear relativistic effect in the presence of the external
magnetic field. The spatial evolution of the phase parameters
and the other dimensionless parameter µ(z′) are given by the
following equations:

∂a(z′)
∂z′ = a(z′)

r ′(z′)
∂r ′(z′)

∂z′ − a(z′)
2τ(z′)

∂τ (z′)
∂z′ , (12)

∂ψ(z′)
∂z′ = −2

k0(z′)r ′2(z′)
+

2

k0(z′)r2
0

+
1

τ 2(z′)ω0(ω0 − ωc)

−k0(z
′)ω2

p(z
′)

ω0(ω0 − ωc)

×
[
−a2

8

(
1 +

�n(z′)
n0

r ′2(z′)
2r2

ch(z
′)

)]
, (13)

µ(z′) = −1

2
k0(z

′)r ′(z′)
∂τ (z′)
∂z′ . (14)

Equations (9)–(14) represent the evolution of the various
parameters of the laser pulse in a magnetoplasma channel under
the condition that the ponderomotive force does not distort the
plasma channel.

(a)
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Figure 2. Variation of the normalized pulse duration τ ′(z′)/τ0 as a
function of kp(z

′) for different magnetic field ratios ωc/ωp: (a) 0.0,
(b) 0.5, (c) 1.0, (d) 1.5.

Figure 1 shows the variation of the normalized radius
(r ′(z′)/r0) of the laser spot with kp(z

′) for different values of
ωc/ωp. The example is studied in the range of magnetic field
from B0 = 103 T (ωc = 17.8×1013 rad s−1) to B0 = 7×103 T
(ωc = 12.5 × 1014 rad s−1). Although a magnetic field of this
order cannot be generated in a laboratory, a quasistatic laser
generated magnetic field of this magnitude or higher can in
some cases be supported [39]. It is observed that the laser
spot size decreases (pulse compression) with increasing ωc/ωp.
The presence of the polarizability term adds a significant
contribution to the pulse compression, and hence enhances the
laser power to the significant level required to initiate the laser
fusion process. Figure 2 shows the variation of the normalized
time period (τ ′(z′)/τ0) of the pulse as a function of kp(z

′) for
different magnetic field ratios ωc/ω0. It is observed that the
pulse duration decreases upon increasing the external magnetic
field and the laser pulse becomes more positively chirped.

3. Modulation instability

When an intense laser pulse propagates in a partially
stripped magnetoplasma channel, the local phase velocity
vp and the group velocity vg change, which can induce
many nonlinear phenomena such as longitudinal bunching,
transverse focusing, and photon acceleration. In PSP channels,
the phase and the group velocity are different to those of the
FSP channel. The presence of an external magnetic field
further alters the mechanism of nonlinear interaction of the
pulse with the channel. This leads to significant changes in
the growth of the modulation instability. The group and the
phase velocity can be determined from the wave equations.
Following Decker and Mori [40, 41], the group velocity of the
laser pulse in the PSP channel is given by

vg = c

[
1 − c2

r2
0 ω2

0

− ω2
p(z

′)

ω0(ω0 − ωc)

(
1 +

αω0(ω0 − ωc)

ω2
p(z

′)

) ]
,

(15)

where α = 8R|a|2. We assume that the laser frequency
ω0 changes to ω + ∂ω0 when the pulse centroid moves over
one plasma wavelength. Expanding the group velocity and

4
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neglecting the product of the perturbed quantities, we get

vg ≈ c
[
1 − c2

r2
0 ω2

(
1 − 2∂ω0

ω

)

− ω2
p

ω(ω − ωc)

(
1 +

δn

n0
− ∂ω0

ω
− 〈a2(z′)〉

2

)

−α
(

1 − ∂〈a2(z′)〉
〈a2(z′)〉 − ∂ω0

ω

)]
, (16)

where we have considered a spatially nonlocalized perturba-
tion in the field intensity, 〈a2〉 + ∂〈a2〉, where the symbol 〈 〉
refers to the average value of a2. Similarly, the phase velocity,

vp = c
(

1 +
c2

r2
0 ω2

0

+
ω2

p(z
′)

ω0(ω0 − ωc)
− α

(ω0 − ωc)

ω0

)
(17)

turns into the following form:

vp = c

[
1 +

c2

ω2r2
0

(
1 − 2

∂ω0

ω

)
+

ω2
p

ω(ω − ωc)

×
(

1 +
δn

n0
− ∂ω0

ω
− 〈a2〉

2

)−α(ω − ωc)

ωp

(
1 − ∂ω0

ω

)]
.

(18)

We assume that there is no further ionization and
recombination during the pulse propagation in the channel.
So, within a local volume, the total photon number i.e. the
classical action, is conserved. Following Mori [42], the
vector potential of the laser can be modulated in three ways:
modulate the longitudinal extent then induce longitudinal
bunching; modulate the spot size then induce transverse
focusing; modulate the pulse frequency then induce photon
acceleration. All these three parameters change during the
pulse propagation in the channel. In the present discussion,
our focus is on the longitudinal bunching and the photon
acceleration, closely related to the modulation instability. The
longitudinal bunching and the photon acceleration, in the speed
of light frame variables ξ = t − z/c and τ = t , can be
understood as [42]

1

l

∂l

∂τ
= 1

c

∂vg

∂ξ
(19a)

and
1

ω0

∂ω0

∂τ
= −1

c

∂vp

∂ξ
. (19b)

Assuming that the change of the intensity is only caused by
the change in the longitudinal extent due to different nonlocal
group velocity, δ〈a2〉 then evolves with τ as

∂(δ〈a2〉)
∂τ

= 1

c

∂vg

∂ξ
〈a2〉. (20)

The change in the group velocity is mainly due to the change
in the pulse frequency ω0, so substituting equation (16) into
equation (20) results in

∂(δ〈a2〉)
∂τ

=
( 2c2

r2
0 ω2

0

− ω2
p

ω(ω − ωc)
− 4Ra2

0,0

) c

ω

∂ω0

∂ξ
, (21)

where 〈a2〉 = a2
0,0/2. Equation (21) shows that the partially

stripped atoms reduce the longitudinal bunching of the energy.
The derivative of equation (21) with respect to τ is

∂2(δ〈a2〉)
∂τ 2

=
( 2c2

r2
0 ω2

0

− ω2
p

ω(ω − ωc)
− 4Ra2

0,0

)

× c

ω

∂

∂ξ

∂ω0

∂τ
. (22)

From equation (17) and equation (19b), we get

1

ω

∂(δω0)

∂τ
≈ −

( ω2
p

ω(ω − ωc)
+ 8R

)
a2

0,0c
∂〈a2〉
2∂ξ

. (23)

Equation (23) shows that in the front edge of the perturbation,
(1/ω)(∂δω0/∂τ) < 0, the frequency is decreasing, while in
the back edge of the perturbation, (1/ω)(∂(δω0)/∂τ) > 0,
the frequency is increasing, i.e., the perturbation is positively
chirped. Further, the terms R and ωc in equation (23) make the
left-hand side term (1/ω)(∂(δω0)/∂τ) more positive. Thus it
is anticipated that the presence of bound electrons and that of an
external magnetic field give rise to a significant enhancement
of the positive chirp. If δ〈a2〉 = 〈a2〉1ei(ω1t−

∫ z

0 k1(z) dz) ≈
〈a2〉1e−ik1(z)cξ , then

∂2δ〈a2〉1

∂τ 2
≈ ω2

pc
4a2

0,0k
2
1(z)

ω3r2
0 (ω − ωc)

(
1 − 2Ra2

0,0r
2
0 ω2

c2

)

×
(

1 +
8Rω2

ω2
p

)
〈a2〉1. (24)

Following [42], we add −(1/4)(k4
1ω

4
pc

4/ω6)〈a2〉1 to the
right-hand side of equation (24) and obtain the final equation
for the phase modulation instability as

∂2δ〈a2〉1

∂τ 2
≈ k̄2

1

4ω̄1
2

[ ωc2a2
0,0

r2
0 (ω − ωc)

(
1 − 2Ra2

0,0r
2
0 ω2

c2

)
×

(
1 + 8Rω̄1

2
)

− k̄1
2
]
〈a2〉1 (25)

where k̄1 = k1/k and ω̄1 = ω1/ωp, and k = ω/c. The
modulation instability is excited only if ∂2〈a2〉1/∂τ 2 > 0.
From equation (25), we have the following excitation condition
for the modulation instability:

k̄2
1

4ω̄1
2

[ ωa2
0,0c

2

r2
0 (ω − ωc)

(
1 − 2Ra2

0,0r
2
0 ω2

c2

)
×

(
1 + 8Rω̄1

2
)

− k̄1
2
]
〈a2〉1 > 0. (26)

If equation (25) is satisfied, the growth rate of the modulation
instability can be given as

�AM =
[

k̄1
2

4ω̄1
2

[ ωa2
0,0c

2

r2
0 (ω − ωc)

(
1 − 2Ra2

0,0r
2
0 ω2

c2

)

×
(

1 + 8Rω̄1
2
)

− k̄1
2
]]1/2

. (27)

The stability boundary condition (equation (25)) is plotted in
figure 3 for R = 700 and various normalized amplitudes a0,0:
(a) 0.01, (b) 0.02, (c) 0.035, and (d) 0.05, for magnetic field
ratios ωc/ωp = 0.0 and ωc/ωp = 1.5. The plots are drawn
for ω0/ωp versus k1/k. The instability excited region is shown
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Figure 3. Stability boundary condition for the following values of a0,0: (a) 0.01, (b) 0.02, (c) 0.035, (d) 0.05. The instability region is on the
left side of the curve. Variations for ωc = 0 and ωc/ωp = 1.5 are shown by red and gray curves respectively.

on the left side of the curve. It is noted that the instability
region decreases as the intensity of the radiation increases,
and depends on the cyclotron frequency ωc. It can be seen
from equation (27) that on increasing the magnetic field ratio
ωc/ωp from zero to 1.5, the instability excited region increases.
This effect of the magnetic field is shown in figure 3. Here,
the red curve is for ωc = 0 and the gray one for ωc/ωp = 1.5.

The finite instability region may arise as a result of the finite-
perturbation-length effect. Here, it is obvious that the finite
region of instability is due to the competition between the
normal and abnormal dispersions. The PSP acts as a normal
dispersion medium, where the group velocity decreases with
increase of the frequency. The FSP acts as an abnormal
dispersion medium, where the group velocity increases with
increase of the frequency. When the abnormal dispersion
dominates over the normal dispersion, i.e., 8R+� < 1 , where
� = 4r2

0 (ω − ωc)/ω0a
2
0,0c, the positive chirp compresses

the perturbation and the perturbation intensity increases; then
the instability can be excited. When the normal dispersion
dominates over the normal dispersion, i.e., 8R + � > 1,
then the positive chirp disperses the perturbation and the
perturbation decreases; then the instability cannot be excited.
Similarly, when the normal dispersion is approximately
equal to the abnormal dispersion, i.e., 8R + � = 1, the
perturbation will be in its original state, and a soliton may be
present.

The ratio of the growth rate of the modulation instability
�AM to the maximum growth rate of the forward Raman
scattering (FRS) instability is �FRS = a0,0ω

2
p/2

√
2ω

[42], i.e.,

�AM

�FRS
=

[
k̄1

2

√
2

[ a0,0c
2

r2
0 (ω − ωc)

(
1 − 2Ra2

0,0r
2
0 ω2

c2

)

×
(

1 + 8Rω̄1
2
)

− k̄1
2
]]1/2

. (28)

In figure 4, we have plotted the instability growth rate ratio
�AM/�FRS as a function of the wavevector ratio k1/k for
different magnetic field ratios ωc/ωp. It is observed that
�AM/�FRS > 1 for a given ratio of the magnetic field.
The instability ratio for the partially stripped magnetoplasma
channel is greater as compared to that for the FSP channel. It
is observed that the instability ratio is sensitive to the choice
of magnetic field ratio and the polarizability of the bound
electrons. In figure 4, we show the calculated modulation and
Raman instability growth rates for ω0/ωp = 5, ωc = 0.01ω0,
R = 700, and a0,0 = 0.01. The FRS instability growth rate
�FRS at k1/k = 6 turns out to be about 7 × 1010 s−1. The
growth of the amplitude modulation instability �AMI for the
same set of parameters turns out to be about 7.7 × 1010 s−1.

4. Group velocity dispersion

The GVD is responsible for the dispersive temporal broadening
or compression of the ultrashort pulse. The perturbation in
the pulse length leads to significant change in the process of
self-phase modulation, relativistic effects, and GVD [43]. The
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pulse duration decreases with the magnitude of the GVD and
the shortest pulses are generated at a point where the laser
becomes unstable. For stable propagation over many Rayleigh
lengths, the GVD must be positive. The presence of bound
electrons and of the external magnetic field together intensify
the positive chirp of the intensity perturbation significantly.
This can be attributed to a significant change in the GVD and
the relativistic effects. The combined effect of the GVD and
relativistic nonlinear instabilities can modulate the propagation
of an intense laser pulse over several Rayleigh lengths. In
this section, a relation for the GVD in partially stripped
magnetoplasma is derived.

Using equation (5), the GVD (∂2k0(z)/∂ω0
2) for a short

laser pulse in a partially stripped magnetoplasma channel under
matched conditions can be given as

GVD = (ω0 − ωc)
3/2

(
4ω

1/2
0

cω3
p

+
16αω

5/2
0

ω3
p

+
4

ωpc(ω0 − ωc)ω
1/2
0

+
8αω

3/2
0 c

ωp(ω0 − ωc)

)
. (29)

It can be seen that the GVD is more positive in the PSP
as compared to the FSP, due to the bound electrons. The
presence of the external magnetic field also makes the GVD
more positive and supports stable and extended propagation in
plasma channels. This helps with attaining the desired power
level for the laser–plasma fusion more efficiently than for the
FSP.

For a stable propagation, the pulse dispersion length
(ZGVD) can be made more positive by modulating the pulse
frequency, intensity of the laser radiation, channel radius, and
plasma wavelength. The presence of bound electrons and of the
external magnetic field make an effective change as compared
to the FSP case.

The pulse dispersion length ZGVD is given as

ZGVD = ω2
0c

2

πω2
p

GVD ≈ ω2
0c

2

πω2
p

(ω0 − ωc)
3/2

×
(

4ω
1/2
0

cω3
p

+
16αω

5/2
0

ω3
p

+
4

ωpc(ω0 − ωc)ω
1/2
0

+
8αω

3/2
0 c

ωp(ω0 − ωc)

)
. (30)

The dephasing length can be given as

Ld = 2πc3

ω2
p

(
ω2

0

c2
− 2

r2
0

+
ω2

pω0

c2(ω0 − ωc)

+
64πω4

0m
2χ(3)

� a �
2

e2c

)
. (31)

Equation (31) implies that the presence of bound electrons in
the PSP results in enhancement of the dephasing length as
compared to the FSP case.

Figure 5 shows a comparative study of the variation of
the dephasing length with the external magnetic field for the
PSP and the FSP. Here, we numerically solve equation (31)
with and without the last term in order to study the behavior
of Ld with an external magnetic field for a PSP and a FSP,

(e)
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Figure 4. Variation of the instability growth rate ratio �AM/�FRS

with k1/k for different magnetic field ratios ωc/ωp: (a) 0.0, (b) 0.5,
(c) 1.0, (d) 1.5, (e) 2.0. The solid curves are for the PSP and the
dashed curves for the FSP.
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Figure 5. Variation of the dephasing length (Ld) with the magnetic
field ratio ωc/ωp for ωp = 2.8 × 1013 rad s−1 for (a) FSP and
(b) PSP. At ωc = 0, Ld for PSP is greater than that for FSP.

respectively. It is noted that the dephasing length Ld increases
with increasing magnetic field ratio ωc/ωp more strongly for a
PSP than for a FSP. The rate of increase of the dephasing length
in the PSP is greater than that for the FSP for a given magnetic
field. This suggests that the polarization current of the bound
electrons plays a significant role in determining the dephasing
length. This may help in maintaining the desired power level
required for the laser fusion schemes when the target is placed
at a large distance. Figure 5 also suggests that in the absence
of an external magnetic field (ωc = 0), Ld is greater for the
PSP than for the FSP. Figure 6 shows the numerical solution
of equation (29) for the GVD coefficient GVD as a function
of the external magnetic field ratio for different values of the
relativistic factor. We have plotted GVD versus ωc/ωp with
and without the last term of equation (29) for the PSP and the
FSP, respectively. The rate of increase of GVD for PSP is
greater than that for the FSP for a given value of ωc/ωp. This
in turn supports the growth rate of the AMI and the self-phase
modulation instability. It is also noted that GVD for the FSP is
less than that for the PSP in the absence of an external magnetic
field (ωc = 0).
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Figure 7. Variation of the GVD length ZGVD with the magnetic field
ratio ωc/ωp for ωp = 2.8 × 1013 rad s−1 for (a) FSP and (b) PSP. At
ωc = 0, Ld for PSP is greater than that for FSP.

Figure 7 shows the numerical solution of equation (30)
for the dispersion length ZGVD as a function of the external
magnetic field ratio. We have plotted ZGVD versus ωc/ωp with
and without the last term of equation (30) for the PSP and the
FSP, respectively. We noted that the dispersion length ZGVD

increases with ωc/ωp. The dispersion growth rate for PSP is
higher than that for the FSP for a given value of the magnetic
field ratio. Figure 7 also suggests that the value of ZGVD for
PSP is greater than that for the FSP in the absence of an external
magnetic field (ωc = 0).

5. Conclusions

The present work deals with the propagation of a relativistic
intense short laser pulse through a partially stripped
magnetoplasma channel in the presence of an external
static longitudinal magnetic field. The polarizability of the

bound electrons and the external magnetic field significantly
change the evolution and interaction characteristics of the
pulse. Three-dimensional coupled equations are derived for
describing the evolution of the pulse in the partially stripped
magnetoplasma channel. The excitation conditions and the
growth rate of the modulation instability were deduced. It
was observed that the growth rate of the modulation instability
increases with the external magnetic field and can reach a value
higher than the maximum growth rate of the forward Raman
scattering instability. It is also observed that the modulation
instability could only be excited in a given range of laser
intensity and frequency. In addition to this, it is also observed
that both the bound electrons and the external magnetic field
significantly contribute to the growth of the positive chirp of the
laser frequency and intensity perturbation. This study reveals
that the presence of the bound electrons and that of an external
magnetic field lead to a significant change in the self-phase
modulation, yielding a significant change in the growth rate of
the atomic modulation instability. The relation for the group
velocity dispersion and the dephasing length is also formulated
and analyzed numerically. Finally, we pointed out that the
existence of the magnetic field and that of the bound electrons
lead to significant enhancement of the dispersion length and
the dephasing length.
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